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THE STRONG UNIFORM CONSISTENCY OF

NEAREST NEIGHBOR DENSITY ESTIMATES

Summary. Let X1 b ,Xn be independent, identically distributed random
vectors with values in le and with a common probability density f. If Vk(x)
is the volume of the smallest sphere centered at x and containing at least

k of the X g ,Xn then fn(x) = k/(nvk(x)) is a nearest neighbor density

1
estimate of f. We show that if k = k(n) satisfies k(n)/n #+ 0 and k(n)/log n + =

then sup lfn(x) - f(x, | + 0 w.p.l when f is uniformly continuous on le.
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Introduction.

Suppose that X

xn are independent, identically distributed

laloo'

random vectors with values in IRd and with a common probability density
f. If Vk(x) is the volume of the smallest sphere centered at x and containing

at least k of the random vectors X1 it ,_Xn, then Loftsgaarden and Quesen-

berry (1965), to estimate f(x) from X X , let

1'tcoln

fn(x) =k/ (nvk(X))

where k = k(n) is a sequence of positive integers satisfying
(@) k(n) t =
(2)
(b) k(n)/n-+0.

(The factor k-1 was used instead of k by Loftsgaarden and Quesenberry; this

Lf has no effect on any of the asymptotic results stated here.) They showed that

fn(x) is a consistent estimate of f(x) at each point where f is continuous and
positive. This result can also easily be inferred from the work of Fix and |

Hodges (1951). Ford = 1, Moore and Henrichon (1969) showed that

sup Ifn(x) - f(x) | - 0 in probability
x

if f is uniformly continuous and positive on R and if, additionally,

k(n)/logn + o . (3) 4

Wagner (1973) showed that fn(x) is a strongly consistent estimate of f(x) at

each continuity point of f if, in addition to (2b),

R

&
Ee-ak(n) <wforalla >0. (4)
: ;
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(Notice that (4) is always implied by (3) but (2a) and (3) are needed to
imply (4).) The result of this paper is the following theorem.

Theorem, If f is uniformly continuous on le and if k(n) satisfies (2b) and

(3) then

n
sup |fn(x) - f(x)| + Ow.p.1.
x

If

& d
fn(X) - 2 K((x-X,)/r(n))/nr(n)" ,
i=

where K is the uniform probability density for the unit sphere in le and {r(n)}

is a sequence of positive numbers, the recent results of Moore and Yackel

(1977) (see Theorem 3.1) and the abo‘ve theorem immediately yield that
sup |f (%) - f(x)| »0w.p.1
X n

whenever f is uniformly continuous on IRd and r(n) 4+ 0, m'(n)d/log n=o,

This fact, an improvement over the previously published convergence results
for the kernel estimate with a uniform kernel (e.g., see Theorem 2.1 of Moore

and Yackel (1977)), also is a special case of Theorem 4.9 of Devroye (1976)

who proves the same statement for all kernels K which are bounded probability
densities with compact support and whose discontinuity points have a closure
with Lebesgue measure 0,
Proof,

To simplify notation we assume below that multiplications are always

carried out before division. Let ¢ > 0 and choose 8§ > 0 such that

[f(y) - f(x) | < e/2
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whenever x and y are within a sphere of volume 8. Deferring measurability
arguments for the moment,

Psup [ (x) - f(x) | > e} =
X

P{U[Vk(x) <k/n(f(x) + €)1} +
x

P{ U [V, (%) > k/n(f(x) - al} .

x:f(x)> ¢

The event U[Vk(x) < k/n(f(x) + ¢)] implies that, for some x, there must be
x

a sphere centered at x with volume less than k/n(f(x) + ¢) and containing k

of the random vectors X ,Xn. If k/ne < § then the probability measure

14.--

of such a sphere must be less than k(flx) + ¢/2) so that, for one of these
n(f(x) + ¢)

spheres S,

k_k(Ex) + e/2)
an(s) TR n  n(f(x) + ¢)

i ke & ke _
~ 2n(f(x) + ¢) ~ 2n(F + ¢)

where F is the maximum of f on Rd, w is the measure on the Borel subsets of-
Rd corresponding to f and bn is the empirical measure on the Borel subsets

of R? for X,,....X . Thus, for k/ne <8,

P{U[Vk(x) <k/n(f(x) + ¢]} s
x

P{ sup [un(S) - u(8) | >ke/2n(F + ¢)} (5)
s:Gn

where Gn is the class of all spheres in le whose volume is less than 4k/ne¢.

Next, with 4k/ne < §,

o gyt o 2
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U [vk(x) > k/n(f(x)~e¢)lc
x:f(%)> ¢

U V() >k/nlEx) - Be/a)]

x:f(x)> e

which implies that, for some x with f(x) > e, there is a sphere S centered at

x, with volume < 4k/ne, and
w(S) = k(f(x) - ¢/2)/n(f(x) - (3/4)¢),
y.n(S) <k/n, and

w(s) - un(S) > ke/4n(f(x) ~ (3/4)¢) .

Ihus ‘
P{ u [Vk(x) >k/n(f(x) - €]} <
x:f(x)> ¢ (6)
P{ sup |u(s) - u.n(S)] >ke/4nF} ,
SeG
n
so that

P{sup Ifn(x) - f(x) | 2 ¢} <2P{ sup Ip,n(S) - u(S)| 2ke/4n(F+e)} .
b4 SeG
n

The proof will be completed if we show that for each ¢ > 0

) P{sup lu () - u(S) | 2ke/dn(Fre)} <. (7)
n s:an

To prove (7) we ‘employ a variation of the argument used by Vapnik

and Chervonenkis (1971). In this variation use will be made of the following

result, If Y1 iees 'Yn represent independent drawings without replacement

from a population of k 0's and 1's then, for ¢ >0 and k > n,

P ITRER N e T
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; P [l(ZYi)/“ -ul 2 e] <200 /(2ut ) @)
1

E - where , the {number of 1's}/k, is assumed to be < 4. Additionally (8)

* holds when Y,,...,Y are Bernoulli random variables with parameter y < %.

(Use the two-sided version of Theorem 3 of Hoeffding (1963) along with
u <3 and log (1 + (e¢/u) 2 2¢/(2u + ¢). See also section 6 of this paper.)
Now, if supu(G) sM and n 2 8M/l52 , an easy modification of Lemma

o}
1 of Vapnik and Chervonenkis (1971) yields

Plsup |u (&) - w(a)| = 8] <
G

2P[sup |p (A) - u' (A)| = 6/2] (9)
G

where U';x(A) is the empirical measure for A with X SETREE ,XZn and G is any

class of Borel sets in Rd for which

PO e e

sup E_un(A) - ud)] and
G

- osup [p () - WA |
| G

are random variables. Putting G = G'n we see that M can be taken to be
4kF/ne. Since, for @ >0,

Plsup [ (B) - w' B ] > &/2] =

n

Plsup |u.n(A) - u;‘(A)l > 8/2 ; sup p,zn(A) < aM]
G
n n

& + P[sup pzn(A) > aM] (10)
G'n : ' .




we see, using (3) and putting § = ke/4n(F + ¢), that (7) follows whenever

both terms of the right-hand side of (10) are summable for some o > 0.

Looking at the first term, we note that it equals

) SR
.4;2nd (2n) !thsuplun(A) - @) | 2 6/211[2up by A < am1®®

n 3 n ]

where IE is the indicator of the setE < le and Q is the probability measure
2nd |

on R - for X X, and where the inner summation is taken over all

PO tinZn
‘ (2n)! permutations of XpreeesXy oo But this last integral equals

__1_. 1 dQ
: /n;zm (2n) ! ) 35 uy @saM] SR T e @) - @) 2 6/2]

G, h

d
f 2na @1 b fsup , @1soM P T @) -y @) | = 6/2] =

Gn

E ./2nd [supu2 A)saM] {(Zn)! i n® = uon a) | = 6/41(¢
n
where G' = G'(xl, e e ,x2n)'1s any finite subclass of Gn which yields the same ]

class of intersections with {x n} and where the inner summation is

p——_,

1 2000 ,xz
again taken over the (2n)! permutations of SERE o The quantity within

{-} is bounded above, using (8), by

T T ST T

2 ( 4
28-n6 /(32u2n(A) 4 46)

whenever p,2n(A) < 4. Since M = 4kF/n¢ we see, from (3), that for all n ]

E sufficiently large the last integral is upper-bounded by




2
-né /(32aM+46
2./n;2nden/( a+)(z;1)dQ.

AeG'

Choosing G' to be a smallest po« tible subclass, we have (Vapnik and

Chervonenkis (1971), Cover (1965)) that(Zl) <1+ (2n)d+3 and, using
; AeG'

(3) again, that the first term of (10) is summable for all & > 0.
Looking at the second term of (10), let r be the radius of a sphere in
Rd whose volume is 4k/ne. If some sphere of radius r contains £ of the

points X X . then there must be at least one sphere of radius 2r,

1 7 90 0 2
centered at one of the points X1 g ,in, which contains at least £ points.

Thus

Plsup p.zn(A) >aM] < an"[u,zn(sX

G, 1

(2r)) > aM]

where Sx(t) denotes the sphere of radius t centered at x. But

P[uzn(sx (2r)) > aM] <

1
max P[M,2 _l(S (2r)) > (¢2nM-1)/(2n-1)]
xeR9 & -5

smax Plu, /(S (2) > [(@2nM-1)/(2n-1)] - 2%4kr/nel .

T
At this point it is not difficult, using (3) and (8), to show that the second
term of (9) is summable as long as « > 2d.
' Finally, to complete the proof, it is easy to see that all of the un-

countable unions over x are indeed events and that the various supremums

over Gn are indeed random variables.
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